## TRANSITioning the WATERSHED



Context:
Water in arid urban environment

Context:
Urban landscapes at risk

Methodology:
Layering sustainable management
Proposal:
Watershed transit oriented district


## ARIZONA'S POPULATION, WATER USE AND GROSS DOMESTIC INCOME FROM 1957-2010

## arizonas water use is VIRTUALLY THE SAME TODAY asit was mooe thana HALFCENTURY AGO, due to strong planning, polchy conservation, ano Investment. THE 1980 GROUNDWATER MANAGEMENT ACT was a chitcal tunnng ponin.



"Water is critical, but once it is provided - as it has to be or Phoenix could not exsist

- but once it is provided it does not bring and answer to what this city should become.

It is a precondition to an answer. The politics of water, as all of you know, are essential, but they are not, in themselves, an answer.
It only buys you entry into the next level of questions."- Paul Godberger

The Arizona Republic Sunday April 26, 2015

Section F, page 5....
Opinion article by Terry Goddard, about the challenge to politicians addressing and anticipating crisis before they happen.



No need to defer key decision on rooftop solar
rom the political notebook: $n$ The state utilitities are rush-
ing to the Arizona Corporation
Commission with proposals to
change what they pay or charge
residential rooftop solar custom-
ers. The commission is ponder-
ing whether it is appropriate to considing whether it is appropriate to considals or defer consideration of them until part of a full-blown rate case. properly, there's no need or rationale to defer a decision until a rate case. Viewed properly, the question isn't
cost-shifts or the cost-avoidance bene-cost-shifts or the cost-avoidance bene-
fits of solar - things competing experts would unpre
The proper question is very narrow
and doesn't need a full blown rate cose and doesn't teed a fuil-blown rate case
to answer: What should utilities pay for surplus rooftop power the commission requires them to purchase? The current answer is the utility's
retail price. Most of the utilities are retail price. Most of the utilities are
saying this is too much, that they should See Robs, Page 7F

Dark money examined
Robert Robb will moderate a Goldwater Institute debate on anonymous poititical
speech: 15 i protected by the First Amendment? Go online to
www.youtube.com/user/Goldwaterinstitute
from $7-9$ p.m. Tuesday to watch four legal from $7-9$ p.m. Tuesday to watch four legal
 LINDA VALDEZ

Holding a baby bald eagle is a wow moment

scape, Yet.
He's only about 6 weeks old.

Colorado River Basin Water Spply and Demand Study
U.S. Department of the Interior, Bureau of Reclamation


Urban landscapes particularly at risk


(The Value of Green Infrastrcture, Center for Neighborhood Technology, 2010)
and (City of Melbourne, Urban Forest Strategy, 2012)


If we manage layered systems of water supply within arid urban environment, can we meet demand?

## CAPTURE surface runoff

Capture: $\quad$ The directional collection of rainfall into defined permeable regions for infiltration

Direct or contain surface runoff (often referred to as stormwater) in order to infiltrate rainfall into permeable land cover.

Many techniques capture and infiltrate stormwater. Green Infrastructure is often used to describe a network of decentralized stormwater management practices.


Center for Neighborhood Technology, Green Infrstructure Values Guide

SW 12th Avenue Green Street Project Portland, Oregon
Kevin Robert Perry, ASLA

Determinate Variables:
rain event data
area in sq ft of infiltration permeability
types of runoff surfaces
\% coefficient contaminates
capactity maintanence of system landscape capacity

## HARVEST rainfall

Harvesting: "the collection of rain without an artifical inducement"
The intent is to "concentrate runoff and collect it in a basin or cistern to be stored for future use"


Underwood Family Sonoran
Landscape Laboratory
Tucson, Arizona
TenEyck Landscape Architects Inc.

Determinate Variables:
rain event data
area in sq ft of catchment type of surface
\% coefficient
contaminates storage capactity maintanence of system integration with irrigation

## REUSE adjacent greywaters <br> Reuse: recirculating previously used water within the site

Greywaters: waste waters of previous use with varying degrees of contamination excludes waste water contaminated by human waste (blackwater)

Greywater systems are varied and complex. context specific numerous sources increased investment clearly defined goals


Underwood Family Sonoran Landscape Laboratory
Tucson, Arizona
TenEyck Landscape Architects Inc.

Determinate Variables:
source gallons collected
Source specifics
contaminants
plumbing efficiency
filter capability
system
components
placement

## How much water does a tree use?


"Wrong Question"

- Chris A. Martin, School of Letters and Sciences, Arizona State University
$\qquad$


## ET。


irrigation system inefficiency


Soil type...... capacity......competing organics
percolation

## How much water meets irrigation demand to ensure continued ecoservice benefits of landscapes in arid urban environments?

## SUSTAIN ecosystem services

Sustain:
Maintain balance of systems to ensure ecoservices of urban landscapes

Utilize water resources from within urban watershed to provide irrigation for landscape. Enhance urban watershed to relate ecosystem services with contributing waters.



Irrigation
Determinate Variables:
placement / siting microclimatic conditions species plant factor planting density aspect/exposure climatic conditions local ET values system/technology ability water frequency / source

Determinate Variables:
rain event data area in sq ft of catchment type of surface
\% coefficient
contaminates storage capactity maintanence of system integration with irrigation

Determinate Variables:
rain event data
area in sq ft of infiltration permeability
types of runoff surfaces
\% coefficient
contaminates
capacity
maintanence of system landscape capacity

## Determinate Variables:

gallons collected from source
Source specifics
contaminants
plumbing efficiency
filter capability system components, placement integration with irrigation

Irrigation
Determinate Variables:

## placement / siting

microclimatic conditions
species plant factor planting density aspect/exposure climatic conditions local ET values system/technology ability water frequency / source

## HARVEST

## 'H' yield \%supply

## SUPPLY

## DEMAND

Water Management Yields
Stormwater capture
Greywater reuse
Rainwater Harvest

Water input to
sustain ecosystem services of landscape

Trees, vegetation


## Water Uncertainty



CHANGING THRESHOLD: Excess Water Supply


CHANGING THRESHOLD: Water Shortage
Increase water yield $<$ - - - - - - > Decrease water demand


Plant removal or alternate selection

## GILBERT ROAD <br> LIGHT RAIL EXTENSION

## PROJECT DESCRIPTION

The 1.9-mile Gilbert Rd. project will extend light rail beyond the Central Mesa extension on Main St. to Gilbert Rd. in Mesa by 2018. It consists of two stations and a park-and-ride on the west side of Gilbert Rd. At Gilbert Rd., there are significant transit connections and the ability to draw more riders from the East Valley.

## BENEFITS

The Gilbert Rd. extension will serve the growing transit demand in the East Valley. It will attract new riders and increase development opportunities in central Mesa.


UPDATE

- The design elements of preliminary engineering are complete
- Estimates of project construction costs have been reviewed and comments were resolved
- Currently defining how the funding will be applied
- Project agreements are being refined to include project specific information as it becomes available


ROUTE MAP

ValleyMetro.org releases numerous reports and intentions for future light rail extensions.

Previously built light rail extensions have proven to spur redevelopment, increase density, and promote a more sustainable lifestyle


Gilbert rd / Main st Light Rail Transit Oriented District


Land Use Legend SINGLE FAMILY CLUB HOUSE MULTI-FAMILY MOTEL CONDOMINIUMS
TRAILERS MISC. COMMERCIAL CONV. MARKETS etail store SHOPPING CENTER OFFICE BUILDING BANK $\square$ AUTO SERVICE $\square$ VEHICLE LOT $\square$ NURSING HOME $\square$ RESTRAUNT MORTUARY AMUSEMENT PARKING LOT $\square$ FITNESS CLUB PRIVATE SCHOOL INDUSTRIAL 를 WAREHOUSE $\square$ UTILITY $\square$ UNASSIGNED WELLS, TOWERS HOSPITAL CHARITABLE RECREATION RELIGIOUS FEDERAL COUNTY MUNICIPAL

Non residential parcels


Grading and ranking of parcels likely to be redeveloped


Major and minor ridges contain and direct flows


Surface flows within watershed, Commerical properties drain in isolation


Transit Oriented District defined by walkable shed within urban watershed Watershed Transit Oriented District (WsTOD)




Potential Development: Day Care Campus Existing Condition: 1 acres building .25 acres impervious 1.14 acres permeable 1.49 acres total


Potential Supply:
capture:
1.3 acres on site
capture and harvest:
9.6 acres from upper watershed reuse:
bathroom sinks, laundry (40 person)
Potential Demand:
400 ' street trees
(14) Swan Hill Olive trees
$=105,280$ gallons per year at peak
500 sq ft lawn
$=11,000$ gallons per year- bermuda
2000 sq ft filtration swales
$=26,000$ gallons per year - native


Potential Development: Affordable Housing



GOAL: Manage and balance numerous water systems: engage dialogue about water ethic in arid urban environments


Efficient Collection/ Delivery of Water


Showcase Water Components


Sustainable Materiality


Reveal Conveyance

## GOAL: Promote and ensure ecosystem services:

 anticipating water scarce future with resilient systems

Accommodate Plants


Walkable Human Habitat


Diverse Plant Palette


Relate Site Development to Ecosystem Services




